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This article considers the instabilities of rotating, shallow-water, shear flows on an 
equatorial 8-plane. Because of the free surface, the motion is horizontally divergent 
and the energy density is cubic in the field variables (i.e. in standard notation the 
kinetic energy density is $(u2+w2)). Marinone & Ripa (1984) observed that as a 
consequence of this the wave energy is no longer positive definite (there is a cross-term 
Uh'u'). A wave with negative wave energy can grow by transferring energy to the 
mean flow. Of course total (mean plus wave) energy is conserved in this process. 
Further, when the basic state has constant potential vorticity, we show that there 
are no exchanges of energy and momentum between a growing wave and the mean 
flow. Consequently when the basic state has no potential vorticity gradients an 
unstable wave has zero wave energy and the mean flow is modified so that its energy 
is unchanged. This result strikingly shows that energy and momentum exchanges 
between a growing wave and the mean flow are not generally characteristic of, or 
essential to, instability. 

A useful conceptual tool in understanding these counterintuitive results is that of 
disturbance energy (or pseudoenergy) of a shear mode. This is the amount of energy 
in the fluid when the mode is excited minus the amount in the unperturbed medium. 
Equivalently, the disturbance energy is the sum of the wave energy and that in the 
modified mean flow. The disturbance momentum (or pseudomomentum) is defined 
analogously. 

For an unstable mode, which grows without external sources, the disturbance 
energy must be zero. On the other hand the wave energy may increase to plus infinity, 
remain zero, or decrease to minus infinity. Thus there is a tripartite classification of 
instabilities. We suggest that one common feature in all three cases is that the 
unstable shear mode is roughly a linear combination of resonating shear modes each 
of which would be stable if the other were somehow suppressed. The two resonating 
constituents must have opposite-signed disturbance energies in order that the 
unstable alliance has zero disturbance energy. The instability is a transfer of 
disturbance energy from the member with negative disturbance energy to the one 
with positive disturbance energy. 

1. Introduction 
The large-scale circulation of an ocean or atmosphere is continually disturbed and 

modified by spontaneous transient waves and eddies whose size and shape bear no 
16-2 
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relation to the pattern of external forcing. Since Charney and Eady’s discovery of 
baroclinic instability this has been understood as the result of scale-selective 
instability. Their results, essentially based on the quasi-geostrophic approximation, 
are the basis of much of our intuition about the stability of large-scale geophysical 
flows. A central ingredient of the usual physical interpretation of these non- 
dissipative instabilities is an analysis of the energy balance. A basic result is that as 
an unstable wave grows, the wave energy increases. (We show below that this is not 
tautological.) The growing wave also modifies the mean flow so that the mean energy 
decreases. Total (wave plus mean) energy is conserved because the gain of wave energy 
is balanced by the loss of mean energy. Analogous results are well known for 
unstratified shear flows whose linearized stability is decided by the Rayleigh 
equation. One is tempted to conclude that the mean flow is a ‘source’ of energy for 
instability. 

Here we argue that this conclusion is misleading in the broader context of 
ageostrophic, horizontal divergent, shallow-water instabilities. Specifically, Marinone 
& Ripa (1984) have shown that once the quasi-geostrophic approximation is 
abandoned the wave energy is no longer positive definite and may indeed be negative. 
A growing wave may have decreasing energy (i.e. its energy becomes more negative). 
The growing wave modifies the mean flow so that the mean energy increases. Once 
again total energy is conserved but in this case the loss of wave energy is balanced 
by the gain of mean energy. 

Is one to conclude that in this ‘negative-wave-energy instability ’ the growing wave 
is a source of energy ? Instead we suggest that it is best to abandon the notion that 
instabilities require a source of energy. Spontaneously growing modal waves in a 
non-dissipative and unforced system are possible if the growing waves and their 
associated alterations in the mean flow (collectively referred to as the ‘disturbance ’) 
do not change the total energy and momentum of the fluid. Thus if one can prove 
that all disturbances-change the energy or momentum of a basic state then the flow 
is stable. A trivial example is a fluid at rest whose energy must increase if disturbed. 
But less obvious examples exist. For instance, Rayleigh’s inflexion-point criterion 
can be physically interpreted as momentum conservation (Taylor 1915). If a parallel, 
non-divergent shear flow has no inflexion points then all disturbances change the total 
momentum of the fluid. Consequently the shear flow is stable. An analogous 
interpretation in terms of energy exists for the Fjortoft theorem. 

Further, and this is perhaps the most surprising result of the present work, 
instabilities can occur that do not entail any transfer of energy between the growing 
wave and the alterations in mean flow. A growing wave may have zero energy and 
distort the mean flow so that mean energy is unchanged. Again, total energy is 
conserved. In $2 we show that this is true for instabilities on any basic state with 
uniform potential vorticity. This is because the transfer of energy, and momentum, 
between wave and mean flow is proportional to potential vorticity flux. If the basic 
state has no potential vorticity gradients then this flux is zero. (Analogous results 
have been found for non-rotating stratified shear flows with piecewise-constant 
profiles of velocity and density by Cairns 1979.) This result seems so counterintuitive 
that a thorough study of the instabilities that exist on flows with uniform potential 
vorticity is suggested and this is the topic of $3. 

These ‘ zero-wave-energy ’ instabilities stand on the border between the familiar, 
positive-wave-energy instabilities described by the Rayleigh equation and the 
negative-wave-energy instabilities discussed by Marinone & Ripa (1984). Admittedly 
the basic states that support them are very special but it is precisely for this reason 
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that they are so interesting. The instabilities that exist on states with uniform 
potential vorticity vividly show that energy and momentum transfer, in either 
direction, between a growing wave and a mean flow is not essential to, or diagnostic 
of, instability. 

The basic state whose stability is investigated is a one-layer, zonal, geostrophically 
balanced, zero-potential-vorticity , /3-plane current which is bounded by two fronts 
at which the layer depth vanishes. Because the potential vorticity is uniform (in fact 
zero) its gradient does not change sign and yet the flow is unstable. As a special case 
we recover the unstable f-plane gravity current treated extensively by Griffiths, 
Killworth & Stern (1982, GKS hereinafter). Also closely related are the unstable 
gravity waves which exist on a non-rotating, shallow-water, Couette flow (Satomura 
1981 a, b). The possibility of instability in these simple, prototypical basic states can 
be anticipated from Ripa’s (1983) theorem (a generalization of the Rayleigh-Fjortoft 
theorem) which states that a sufficient condition for stability is that there is some 

( l . l a ,  b )  constant a such that 
(a- U)a < gH and (a- U) QY 2 0 

for all y. (Here U(y) is the zonal velocity, H(y) the depth and &(y) = (f - U,) /H the 
potential vorticity of the basic state.) Flows with uniform potential vorticity 
sometimes violate (1.1 a) and calculation reveals that they are indeed unstable. Ripa’s 
proof of the stability condition in (1.1 ) relies on energy and momentum conservation 
in the fashion previously mentioned. If the basic state satisfies (1.1) then all 
disturbances alter either the energy or momentum of the fluid and so the flow is stable. 

The choice of a basic state with zero potential vorticity is motivated by the integral 
arguments in $2 which show that in this case there are no transfers of energy and 
momentum between a growing wave and the mean flow. Our philosophy is to direct 
attention at this counterintuitive part of parameter space and in so doing illustrate 
a variety of theoretical ideas such as negative- and zero-wave-energy instability, 
Ripa’s theorem and destabilizing resonances between geophysical waves. 

Additional motivation for an analysis of a zero-potential-vorticity currents is 
provided by Sardeshmukh & Hoskins (1985) study of vorticity balances in the 
tropical troposphere. In  the upper troposphere, at 150 mb, they find a symmetric 
band with zero potential vorticity (e.g. their figure 4a). However, direct application 
of the stability calculation here is dubious because the tropospheric region of zero 
potential vorticity is bounded by a strong positive potential vorticity gradient, rather 
than a ‘front’ where the thickness of the troposphere vanishes. Hoskins, McIntyre 
& Robertson (1985) present isentropic potential-vorticity maps which show this 
boundary very clearly: the equatorial belt with zero potential vorticity abuts a 
poleward region whose high potential vorticity reflects its polar origins. The poleward 
region, which is not included in our basic state, is very active. Nonetheless, as a 
baseline for future calculations with realistic basic states, it is worthwhile to exhibit 
the large-scale instabilities of a flow with zero potential vorticity in their purest form. 
We think it is likely that the unusual energy balances illustrated here will survive 
an elaboration of the basic state. Our calculations also illustrate stated limitations 
of the ‘invertibility principle’ discussed by Hoskins et al. (1985). The instability 
discussed in $ 3 has no potential-vorticity signature and moreover is ageostrophic. 
These complications would make it extremely difficult to detect, and analyse 
dynamically, using isopycnal potential-vorticity maps. 

The plan of this paper is as follows. Section 2 discusses some general results 
concerning energy and momentum transfers between waves and the associated 
modification of the mean flow. No restrictive assumptions about the form of the 
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potential-vorticity distribution are made in this section. Section 3 formulates the 
linearized stability problem for perturbations on a parallel flow with zero potential 
vorticity. In  $4 we discuss and illustrate the stable and unstable modes which exist 
on this profile. The instabilities are characterized as resonant interactions between 
shear modes. Section 5 analyses non-divergent instabilities characterized by the 
Rayleigh equation using this concept of resonating shear modes. Section 6 is the 
conclusion. 

2. General results concerning mass energy and momentum transfers 
2.1.  The equatorial $-plane 

We consider one active layer of fluid with a moving, free boundary (the front) which 
lies on an equatorial $-plane. The dimensional equations of motion are then 

( 2 . 1 ~ )  

( 2 . l b )  

h ,+V*(hu)  = 0, (2.1 c )  

where g is the acceleration due to gravity and B the north-south gradient of the 
Coriolis parameter. Special cases of (2 .1)  include non-divergent, non-rotating two 
dimensional flow and f-plane motion. 

The non-dimensional version of the above set is 

Du 
Dt 
-- YV = - h,, 

Dv 
Dt 
-+YU = -h,, 

( 2 . 2 ~ )  

(2 .2b)  

h,+V.(hu) = 0, (2 .2c)  

and to recover dimensional results from non-dimensional 

t 3 t$L, ( 2 . 3 ~ )  

1 (2 .3b)  

( 2 . 3 ~ )  

where L is a lengthscale which we specify below. 

conservation of potential vorticity : 
There are three important, exact consequences of (2 .1)  or (2 .2) .  First there is 

(2 .4a,  b) 
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Secondly there is energy conservation : 

h2 + h(U2 +v2) da, Et = 0, (2.5a, b )  

where the integration is over the area occupied by the fluid. Finally there is 
2-momentum conservation : 

M E  I h(u-2y2)da, Mt = O .  (2.6a, b )  

2.2. Weakly nonlinear changes in the mean flow and potential-vorticity fluxes 
The remainder of this section is a discussion of the energetics of the stable and 
unstable waves which are supported by an arbitrary basic state (U, H ,  &). For clarity 
and generality we make no assumption about the potential vorticity of this flow. 
Following Ripa (1983) and Marinone & Ripa (1984) we write the solution of the full, 
nonlinear equations of motion as 

u* = U ( y ) + u ( z , y , t ) ,  ( 2 . 7 ~ )  

(2.7 b )  

( 2 . 7 ~ )  

i.e. the basic state plus a nonlinear disturbance. This notation differs from (2.1) but 
the context will clearly imply what is intended. The disturbance fields (u,  v, h) can 
further be decomposed into a zonal mean (an x-average), denoted by an overbar, and 
a wave 

For the weakly nonlinear disturbances considered here 

u = u ( y ,  t )  +u’(x, y ,  t )  etc. (2.8) 

u >> u’ >> u. (2.9) 

Note that even though the wave fields, u’ etc., are much larger than the mean flow 
modifications, U etc., energetically both of these terms are on the same footing. 

The linearized equations of motion are 

Du+HQv = -h,-B,, ( 2 . 1 0 ~ )  

where 

DW+YU = -h,-B,, 

Dh+(Hu),+(Hv), = 0, 

a a  
at ax D = - + U -  

(2.10b) 

(2.104 

(2.11) 

is the linearized convective derivative. We have suppressed the primes in (2.10). The 
context will imply our intention. In  writing (2.10) the quadratic nonlinearities have 
been neglected. We have also introduced a forcing term represented by the gradient 
of an arbitrary, external potential B(x, y ,  t )  into the momentum equations. This proves 
to be a, useful device in understanding the properties of the stable modes that exist 
on the basic state. The essential idea is that these modes can be generated by the 
force VB, and we shall be able to calculate how the total (wave plus mean) energy 
and momentum of the fluid must be changed by this force in order to excite a stable 
wave. Of course the unstable waves do not require an external force to generate them. 
They can appear spontaneously because the total energy and momentum of the fluid 
is unaltered by their presence. 
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The first consequence of (2.10) is potential-vorticity conservation : 

Dq+vQ, = 0, ( 2 . 1 2 ~ )  

q H-’{v, - U, - Qh}, (2.12b) 

and we note that (2.12) is unaffected by the external force VB. Thus the potential 
force can change the energy and momentum of the fluid (see the discussion below) 
but cannot alter the potential vorticity of fluid particles. Equation (2.12) can be 
integrated in the usual way by introducing the particle displacement g : 

Dg = v (2.13) 

with the consequence q = -gQ,. (2.14) 

In obtaining (2.14) from ( 2 . 1 2 ~ )  it has been assumed that q is initially zero. Thus 
we are confining attention to normal mode perturbations which can arise without an 
external alteration of the initial potential vorticity of the fluid. A very important 
consequence of (2.13) and (2.14) is 

(2.15) vq = -i(?)t Qy, 

which shows that there are no potential-vorticity fluxes if the basic state has uniform 
potential vorticity (indeed there is then no perturbation potential vorticity in a 
normal mode). 

- 

2.3. A strategy for Jinding conservation laws of the linearized equations illustrated 
using mass conservation 

A theme of this article is the relation between conservation laws of the exact nonlinear 
dynamics and their expression in the linearized stability problem. In principle one 
can ignore the nonlinear problem and discover these linearized conservation laws 
solely by manipulating the linearized system. But this is unsystematic and often 
requires ingenuity and patience. A better approach is to return to the nonlinear 
dynamics and use it to guide ones manipulation of the linearized system. We illustrate 
this procedure by discussing the linearized conservation law which corresponds to 
mass conservation. 

This is not entirely straightforward because there is a free boundary (a ‘front’) a t  
which h, = 0. Thus the area of the (2, y)-plane occupied by the disturbed fluid differs 
from the area occupied by the basic state. In analogy with (2.7) we write 

a, = A + a ,  (2.16) 

where a, is the area occupied by the disturbed fluid. 
It must be admitted that this distortion has already introduced some difficulties 

which have been glossed over. Specifically, is it sensible to use a zonal average as in 
(2.8) and (2.15) when only part of a latitude line is covered with fluid? An entirely 
satisfactory answer to this question requires a redefinition of ‘average ’ and probably 
the introduction of Lagrangian variables (e.g. Andrews & McIntyre 1978). However, 
here we confine attention to weakly nonlinear disturbances and neglect terms of order 
amplitude cubed. Thus we deal mostly with (2.10) which is defined on the undistorted 
band of latitudes. We find consistent (to order amplitude squared) conservation laws 
by multiplying (2.10) by u, v or h and zonally averaging over this undistorted band. 

An example will make this clear. Because the disturbance does not alter the mass 
of fluid 

JHdA = I h ,  da,, 
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and using ( 2 . 7 ~ )  and (2.16) this is equivalent to 

O =  hda+ Hda+ hdA. SIS (2.17) 

The above is an exact nonlinear expression for the ‘disturbance mass’, i.e. the 
difference between the mass of the fluid with and without the disturbances. In  the 
weakly nonlinear approximation only first term on the right-hand side of (2.17) can 
be calculated directly with the solution of (2.10). In fact a little thought shows that 

(2.18) 

where the overbar denotes a zonal average and the square bracket denotes the 
difference between its contents evaluated at the two bounding, undisturbed fronts. 
One might refer to j h d a  as the ‘wave mass’, i.e. this is the contribution to the 
disturbance mass in (2.17) that is explicitly O(amplitude)2 and whose time derivative 
can be calculated from the linearized system. 

Now because mass is conserved we anticipate that if we calculate the rate of change 
of j h d a  from (2.10) we shall find a conservation law. To do this we evaluate (2 .10~)  
at the front, where H = 0, and use (2.13) at the front to integrate this relation. One 

h = -7H II’ (2.19) obtains 

which we also recognize as the Taylor series expansion of the exact nonlinear result 

da = [GI + O(ampli t~de)~,  

H(y+?1)+h(z,y,t) = 0. 

From (2.19) we see directly that 
_ -  
hv + q2HU = 0. 

(2.20) 

(2.21) 

This is a conservation law whose physical content is mass conservation. From (2.17) 
and (2.18) its implication is that 

-[GI = [qH,] = Hda+ hdA, (2.22) s s  
i.e. the nonlinear contributions to the disturbance mass can be expressed in terms 
of the solutions of the linearized problem. 

The remainder of this section concerns energy and momentum conservation and 
the strategy is similar to the preceding calculation. One first expands the nonlinear 
conservation law as in (2.17), and then identifies the term, such as (2.18), whose rate 
of change can be calculated with the linearized equations of motion. This calculation 
is guaranteed to reveal a linearized conservation law such as (2.21). This is essentially 
the procedure used by Ripa (1983) and the importance of these results justifies their 
recapitulation here. Additionally, the free boundary introduces complications not 
considered by Ripa. 

2.4. Energy and momentum conservation 

In an unforced problem both the energy 
i r  

and momentum 

(2.23) 

(2.24) 
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are conserved. Now expand (2.23) using (2.7) and (2.16). Neglecting the cubic terms 
leaves 

E ,  = E,+E,+E,+E, ,  ( 2 . 2 5 ~ )  

E , = -  H V + P d A ,  
2 ' I  
2 ' I  E, = - HV+hVda, 

(2.25b) 

(2.25 c) 

El = HUu+(H+$V)hdA, (2.25d) 

E ,  = - H ( ~ ~ + ~ ~ ) + 2 U h u + h ~ d A ,  (2.25e) 

which, apart from the extra term E,, is the decomposition introduced by Marinone 
& Ripa (1984). Because H vanishes linearly with distance from the front, terms such 
as Hzda are negligible. The term E,  is the wave energy and its rate of change can 
be calculated from (2.10). Because E , - E ,  is a constant, changes in E,  must be 
balanced by changes in El and E,. El + E,  is referred to as the mean energy. In some 
circumstances it might be informative to distinguish between E,  and E,, but here 
we lump them into one category. Finally the disturbance energy (or pseudoenergy) 
is the sum of all the terms quadratic in amplitude: 

disturbance energy ( E )  = wave energy (E,)  + mean energy (8, = E,  + E,). 

Thus the disturbance energy is the difference between the energy of the fluid with 
the disturbance (E , )  and without the disturbance (E,) .  

In  general E, 8, and E ,  all have indefinite sign. It is perhaps counterintuitive 
that E is sometimes negative. One somehow feels that creating a disturbance in a 
parallel flow increases the total energy of the fluid. But this is not the case and the 
earliest references to this that we are aware of are Landahl (1962) and Benjamin 
(1963). (In these articles E is called the 'activation energy'.) Waves with E < 0 will 
be referred to as negative-energy disturbances and those with E > 0 as positive- 
energy disturbances. In  the absence of forcing and dissipation both of these are stable 
because exciting them changes the total energy of the system. 

I 
2 ' I  

An analogous procedure can be applied to (2.24) : 

M ,  = M , + M , + M , + M , ,  

M ,  = j H (  U -  by") dA, 

Ma = IH(U-b2)+(U-bz)hda,  

M ,  = Hu+(U-b')hdA, I 

( 2 . 2 6 ~ )  

(2.263) 

( 2 . 2 6 ~ )  

(2.26d) 

(2.26e) 

where again cubic terms are neglected. M ,  is the wave momentum and the remaining 
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quadratic terms, M ,  + Ma, define the mean momentum. The disturbance momentum 
(or pseudomomentum) is the sum of all the quadratic terms: 

disturbance momentum (M) = wave momentum (M,)  
+mean momentum (~2, = M,+M,) .  

The disturbance momentum is the difference between the momentum of the fluid with 
the disturbance (M*)  and without the disturbance (Mo) .  

In Andrews & McIntyre's (1978) Generalized Lagrangian Mean (GLM) theory, M 
is pseudomomentum and E the pseudoenergy. We have preferred to refer to them 
as the disturbance momentum and disturbance energy because this emphasizes that 
they are equal to the amount of energy and momentum in the disturbed fluid minus 
that in the undisturbed. Notice that this definition does not rely on a small-amplitude 
expansion and indeed the GLM theory could be used to generalize the preceding 
results to finite amplitude. It is also likely that a Lagrangian theory would more 
elegantly accommodate the complications of a moving, free boundary. 

For an unstable mode it is clear that both E and M must be zero, i.e. the disturbance 
amplifies spontaneously without an external source of energy or momentum. Stated 
differently, the total energy and momentum of an ideal fluid is unchanged by an 
unstable wave. On the other hand stable modes have non-zero disturbance energy 
or momentum. This is why they are stable - exciting them changes the total energy 
or momentum of the fluid and requires an external source. In fact we show below 
that for a stable mode E and M are connected by 

E = cM, (2.27) 

Because E = 8,+ E, is zero for an unstable mode, three different types of 

(a )  El + - 00, E, + 00 (positive-wave-energy instability), 
(b )  8, = 0, E, = 0 (zero-wave-energy instability), 
( c )  I?, -+ 00, E, + - 00 (negative-wave-energy instability). 

where c is the phase speed of the mode. 

instability can be distinguished on the basis of energetics : 

In  all three cases E = 8, + E, = 0 so that energy is conserved as the wave grows. Of 
course it is possible to refine the tripartite scheme above. For instance in (b) it might 
be interesting to calculate the transfers between El and E,. However for most 
purposes the above is probably adequate especially because we can now show that 
transfers between 8, and E, are very simply expressed in terms of potential-vorticity 
fluxes. 

2.5. The connection between energy and momentum transfers 
and particle displacements 

By direct calculation from (2.10) one can show that 

m,,+H%j = -(f i) ,-hB,,  (2.28) 

where m, = is the density of M,. Likewise for the energy 

e2t -k UH%j = - ( U E +  H%+ H a ) , - - ,  (2.29) 

where e ,  = + H ( G + $ ) + ( U Z + + E 2 )  is the density of E,. Apart from the terms 
involving the external forcing, these results, and their consequences (2.30) and (2.31) 
below, were given previously by Ripa (1983). Their importance justifies their 
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recapitulation here. They show that the wave energy and momentum can change 
because of either external forcing (0) or transfers with the mean flow. This second 
process cannot change the total energy or momentum of the fluid and indeed using 
(2.15) we can rewrite (2.28) and (2.29) as 

m, = - (fi),-he,, (2.30 a )  

e, = - ( U E + H Z + H ; ; B ) , - h , B ,  (2.30 b )  

where e = +H(Ti2+P)+ U&++E2-iH2UQyq2, (2.31 a) 

m = L-ii?Q,q2, (2.31 b) 

are the densities of disturbance energy and disturbance momentum. Finally, inte- 
grating (2.30) over the area occupied by the basic state leaves the conservation laws 

- 
- 

M, = - [mzdA, E, = - [h ,dA.  (2.32a, b )  
J J 

This result, without the right-hand side, was anticipated by the arguments in the 
previous section. The direct calculation above has provided expressions for a, and 
8, in terms of particle displacements, e.g. the last terms in (2.31). This result is well 
known in the quasi-geostrophic context (e.g. Pedlosky 1979) and as one anticipates 
from Andrews & McIntyre’s GLM formulation it is much more general. Indeed this 
provides further justification for referring to E, as the wave energy. That is, the rate 
of change of the positive definite quantity 

i r  

A 2 H(u2 + v2) + h2 dA (2.33) 

is not proportional to a weighted integral of the potential-vorticity flux and cannot 
be related to particle displacements in such a way that conservation of disturbance 
energy is transparent as in (2.32). 

In a recent, very interesting discussion of the quasi-geostrophic initial-value 
problem, Held (1985) showed that disturbance momentum and disturbance energy 
are of fundamental importance because linear shear modes are orthogonal with 
respect to the norm defined by these quantities. Thus they can be used to decide 
whether an initial condition projects onto the discrete or continuum modes. Held also 
noted that in the quasi-geostrophic case the disturbance energy and disturbance 
momentum of a shear mode are related simply as in (2.27) where c is the phase speed 
of the mode. We now show this result is true for ageostrophic modes. 

Imagine exciting a stable mode with phase speed c by gradually switching on 
external forcing of the form t ? ( z - c t , y , d ) .  It follows from (2.32) that E-cM is 
constant, and zero before the forcing acted, so (2.27) is a consequence. 

The results in this section are not dependent on any particular assumption about 
the potential vorticity of the basic state, but we now note that if Q = (y- U,) /H is 
uniform then q and are zero. This follows from (2.14) and (2.15). The implications 
for energy and momentum transfers between the wave and the mean flow modifi- 
cations are startling. The last terms in (2.31a, b) are zero and so 

M = M,,  = 0, E = E,, 8, = 0, (2.34) 

if &, = 0. Thus for a stable mode all of the disturbance energy and momentum are 
in the wave and none is in the mean flow modifications. For an unstable mode M, 
M,, &,, E, E, and 8, must all be zero. There is no transfer of energy and momentum 
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between the growing wave and the mean flow. It is this counterintuitive case that 
is analysed in the next two sections. 

3. The linearized stability problem for flows with zero potential vorticity 
3.1. The basic state: zero-potential-vorticity zonal Jlow 

Suppose that the unpertiurbed flow (the basic state) is zonal (i.e. i3/ax = 0) and has 
zero potential vorticity. Then from (2.4) 

u, = Y, (3.1) 

where capital letters denote basic-state variables. Integrating (3.1) and then calcu- 
lating H from the geostrophic balance gives 

(3.2a) 

(3.2b) 

?$?+H=#', (3 .2~)  

where one of the constants of integration is $ and the other is determined by requiring 
that the front is at y = 1 (Salmon 1982). (This amounts to a specification of L in 
(2.3).) In terms of dimensional variables -- 

where U, is the value of U at the front (y = L). 
As the parameter q5 is varied there are marked changes in the structure of the basic 

state: see figure 1. When $ > a the flows span the equator. If $ < a the current 
separates from the equator and extends from y = f (1 - 44): to y = i- 1. Thus in this 
case the width of each branch is 

p E 1-(1-4$)4. (3.3) 

Of course the dynamics of these two branches are uncoupled and by considering each 
in isolation we have a basic state that is asymmetric about the equator. As $ is 
reduced the width of the current (i.e. p($)  in (3.3)) becomes smaller. Thus the f-plane 
limit discussed by GKS is recovered after rescaling the y-axis as in (3.4) below. 

When $ < a it is often convenient to rescale and translate y so that the current 
spans the interval (0,l). (Note how the current width p depends on $ in (3.3).) Thus 
if 

Y 1 
Y=-+1--, 

P P 

where p is defined in (3.3), then the basic state is 

(3.4) 

u = $2( Y - Y,) ( Y- Y-), (3.5a) 

1 + (1 - p  +@/2)4 
Y * = 1 -  - 

P 

(3.5b) 

(3.54 

This particular representation of the basic state makes it easy to take the singular 
limit q5 --f 0 and recover the f-plane problem discussed by GKS. 
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- 1  1 - 1  1 

- 1  1 

FIQURE 1. The basic state for various values of 9. (a )  9 > !j, ( b )  !j > 9 > i, (c) f > 4. In ( c )  the 
flow is separated from the equator and the fronts are at y = (1  -49)a and 1 .  

3.2. The linearized perturbation problem 
Now suppose that a perturbation (u, v, h) is superimposed on the basic state ( U ,  0, H). 

u*@, Y , t )  = U(y) + 4x9 y, 4,  ( 3 . 6 ~ )  Thus 

v*@, y, t) = 4x9 y, t), (3.6b) 

h*(x, y, t )  = H(y) + h(x, y, t ) ,  ( 3 . 6 ~ )  

where * indicates a total field. Substituting (3.16) into the equations of motion gives: 

( 3 . 7 ~ )  

(3.7b) 

(3.7c) 

Note that in (3 .7a) ,  the term (U,-y)v is absent because the basic state has zero 
potential vorticity. Assuming that the perturbation has normal mode form : 

(u, v, h) = (u, v, h)  exp [ik(x-ct)] 
and neglecting the quadratic terms, reduces (3 .7)  to 

ut -t Uu, + h, = quadratic terms, 

vt -t Uv,+ yu + h, = quadratic terms, 

h, -t Uh, + (vH), + Hu, = quadratic terms. 

( U - ~ ) u + h  = 0, ( 3 . 8 ~ )  

yu+ik(U-c)v+h, = 0, (3.8b) 

Hu-iik-'(Hv),+(U-c)h = 0. ( 3 . 8 ~ )  
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Elimination of h between ( 3 . 8 ~ )  and (3.8b) gives an important intermediate result: 

ikv = uy, (3.9) 

i.e. normal mode perturbations have zero potential vorticity. This is a special case 
of a more general, finite-amplitude result: because the basic state has constant 
potential vorticity, perturbation potential vorticity cannot be created by displacing 
particles. Equation (3.9) also implies that uy is non-singular everywhere (even at the 
fronts where H = 0) and this is the boundary condition that is applied to the 
eigenvalue problem below. .. 

Using (3.9), (3.8) can be put in the form 

- k2[H- ( U -  c)’] u = 0. (3.10) 

Together with the boundary condition that u is non-singular where H = 0, this is 
the linearized stability problem. Without loss of generality we can normalize the 

(3.11) solution so that u = l  a t y = l .  

Before turning to the solution of (3.10) we first derive some results that restrict 
the distribution of eigenvalues (a weak version of Ripa’s theorem and a semicircle 
theorem). 

We should note that the eigenvalue problem (3.10) and (3.11) is formally very 
similar to that considered by Blumen (1970) and Blumen, Drazin & Billings (1975) 
in the context of shear instability in an inviscid, compressible fluid. Also formally 
similar, and closely related physically, is Satomura’s (1981 a, b) study of shear 
instability in non-rotating shallow water. Perhaps, however, the most closely related 
predecessor is the discussion in GKS of the ageostrophic instability of gravity currents 
on an f-plane. This is an important special case (9 = 0) of the present investigation. 

3.3. A necessary condition for instability 
The calculations below will show that the stability boundary (i.e. the shape of the 
various neutral curves) has an intricate dependence on 4 and k. Thus at the outset 
it is important to note any general results that restrict the region of parameter space 
in which instability is possible. As we mentioned in $1  one such is Ripa’s (1983) 
theorem. For the basic flow in (3.2), ( 1 . l b )  is satisfied for any a. Condition ( l . l a )  
requires that a = 4 because H = 0 at y = &- 1. It is then easy to see that if the 
inequality is to obtain then 4 > f. Thus the zero-potential-vorticity profile in (3.2) 
is stable if 4 > f and unstable if 4 =b (GKS). 

For completeness we now derive this result directly from (3.10). We emphasize that 
this is a weaker version of Ripa’s theorem both because normal mode perturbations 
are assumed and Lyapunov stability is not assured. 

We follow Paldor (1983) and multiply (3.10) by the complex conjugate of u. We 
then integrate across the current and separate real and imaginary parts. Introducing 

8= u-4 = y2-1, ( 3 . 1 2 ~ )  

c “ =  c - 4  = Er+iEi (3.12 b\ 
one can put these in the form 

( 3 . 1 3 ~ )  
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If Zi 4 0 then (3.13) becomes 

l d y  Hlu,I2 + [H- i? + q + q] k21uI2 = 0. (3.14) 

But because H -  P = i(1-y2)(3y2+4$-3) (3.15) 

the left-hand side of (3.14) is positive definite if # > 3. Thus in this case Ei must be 
zero. 

3.4. A semicircle theorem 
To obtain bounds on the size of the real and imaginary parts of c or Ewe follow Howard 
(1961). Noting that 

O > B > a ,  (3.16) 

where a = - +  if$>:, 

a = - 2 #  i f # < + ,  

O > ( 8 - a )  81u12dy = DlU12-a81u12dy, (3.17) I s one has 

and then from (3.13) and (3.14) 
r r 

(3.18) 

Because the first term on the right-hand side is positive definite, this implies 

(Zr--;ta)"EFf < (*)2 (3.19) 

so that the complex wave speed for any unstable mode must lie inside the semicircle 
in the upper half-plane which has the range of U for diameter. 

4. Numerical solution of the eigenvalue problem 
4.1. The case $ = 0 

We begin discussion of the numerical results with the case $ = 0. The numerical 
method is described in Appendix A. With the representation (3.2) the width of the 
current vanishes as $ + O  and so it is convenient to use the rescaled basic state in 
(3.4) and (3.5). In fact this was done whenever $ was less than to ensure that all 
cases had identical numerical resolution, i.e. the basic flow extended from Y = 0 to 
Y = 1. Because the length has been rescaled by the factor ,u it is also necessary to 
rescale c and k according to 

k = , u k ,  2 ~ 2 ,  
P 

and define 

so that the only changes in (3.10) are notational. 
Figure 2 shows the dispersion curves, 2 as a function of k when # = 0. Apart from 

a factor of d 2  in the definition of wavenumber these results are identical with those 
in GKS. However besides these unstable Kelvin waves there are additional gravity- 
wave instabilities at  higher wavenumbers, e.g. k x 5.6. These occur whenever the 
dispersion curves in figure 2(a) intersect. This pattern of unstable 'resonances' at 
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FIGURE 2. Dispersion curves when q5 = 0. (a) The real part of the phase speed as a function of 
wavenumber. (a) Growth rate as a function of wave number. In (a) intervals of instability are 
indicated by solid lines connecting x ' 8 .  The instability with c, = 0 is a resonance between two 
Kelvin waves and these modes are distinct and stable when k > 2.95. In  addition to the Kelvin 
modes there are gravity-wave modes whose phase speeds are proportional to k-' as k+O. 

wavenumbers where the dispersion curves cross is very similar to that presented by 
Satomura (1981a, b). In $5 we advance a physical 'explanation' of this instability. 
In anticipation of the more detailed discussion in that section we remark that half 
of the stable modes in figure 2 (a), have positive disturbance energy E and the other 
half have negative disturbance energy. The instabilities occur when a mode with 
E > 0 resonates (i.e. has the same phase speed and wavenumber) as a mode with 
E < 0. The unstable, resonant structure has E = 0 and can be thought of as 
transferring disturbance energy from the constituent with E < 0 to the one with 
E > 0. In this way both partners can spontaneously grow without an external 
source of energy. An analogous interpretation in terms of disturbance momentum is 
straightforward because of (2.27). This result shows that stable modes with opposite- 
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FIQURE 3. Horizontal structure of the waves when q5 = 0. ( a )  An unstable Kelvin mode with f = 1 ,  
8, = 0, he, = 5.818 x ( b )  A stable gravity mode with k = 1 and 8, = 1.047. (c) A stable gravity 
mode with f = 1 and 8, = 1.754. 

signed energies, and the same phase speeds, also have opposite-signed disturbance 
momentum. Also it is clear that a linear combination that has E = 0 also has M = 0. 
Thus the energy and momentum constraints are simultaneously satisfied. 

Figure 3 shows the horizontal structure of stable and unstable waves when gi = 0. 
The shaded areas indicate regions where h is less than zero. In  figure 3(a)  we show 
the unstable Kelvin modes. The right-hand panels show IuI = [ u ~ + u ~ ] ~ .  The waves 
in figure 3 (b, c)  are the first two stable gravity modes in figure 2 (a). These higher 
modes are very similar to those discussed by Satomura (1981 a, b). Because he 
neglected rotation, there was no Kelvin-like mode in his study. 
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FIQURE 4. An unstable resonance between a Kelvin wave and a gravity wave with q5 = 0. ( a )  & = 4.0 
and 6, = 0.0964. This is a stable Kelvin wave and at this value of & i t  is concentrated at  the front 
Y = 1. ( b )  & = 4.0 and 6, = 0.276. This is a stable gravity wave which is trapped at the Y = 0 front. 
(c) An unstable superposition of the two modes above. In this case k = 5.6, 6,  = 0.156 and 
I&, = 0.0249. This instability occurs when the dispersion curves intersect - see figure 2(a ) .  

Figure 4 illustrates the unstable resonance between the Kelvin mode and first 
gravity mode in figure 2 (a) .  In ( a )  and ( b )  & = 4 and both modes are stable, boundary 
trapped, and have different phase speeds. One has E > 0 and the other has E < 0. 
In (c) & has increased to 5.6 and the phase speeds are equal - see figure 2(a ) .  The 
ensuing resonance is unstable, with E = 0, but the growth rate is rather less than that 
of the Kelvin resonance in figure 3 (a) .  Note that the structure of this unstable wave 
is roughly a linear superposition of its two resonating constituents. 
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FIGURE 5. Dispersion curves when q5 = 0.2. (a) The real part of the phase speed as a function of 
wavenumber. The intervals of instability are indicated by the solid lines connecting the x '9. (b )  
Growth rate as a function of wavenumber. Note that the unstable Kelvin mode has a westward 
phase speed. 

4.2. The case 4 = 0.2 

Figure 5 shows the effects of planetary vorticity gradient, + = 0.2. The basic state 
is now asymmetric about Y = 2 and consequently the dispersion curves in figure 8 (a) 
are now asymmetric about 2, = 0. I n  particular the most unstable wave, which is 
again a resonance between the two frontal Kelvin waves, now has a westward phase 
speed. On the whole the global structure is quite similar to 4 = 0 but the growth rates 
are reduced. 

4.3. The cases q5 = 0.26 and 0.28: a transequatorial basic state 
Figure 6 shows the case 4 = 0.26. The flow spans the equator. There are now two 
types of modes: symmetric ( u ( y )  = u( -y)) indicated by + and antisymmetric 
( u ( y )  = -u( - y ) )  indicated by - . 
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FIQURE 6. Dispersion curves for # = 0.26. Symmetric modes are indicated by + and antisymmetric 
by - . At this value of # the current spans the equator and the intervals of instability are dense 
aa the frontally trapped Kelvin wave (i.e. the one whose phase speed becomes positive as k increases) 
resonates with various gravity modes. 

Figure 7 shows the horizontal structure of the Kelvin waves in both the stable and 
unstable regimes. In  figure 7 (a), k = 1 and the modes are unstably coupled. The zonal 
velocity is virtually uniform across the channel and is roughly in geostrophic balance. 
In  figure 7 (b, c), k = 3 and the unstable wave in 7 (a) has divided into two stable, 
symmetric waves with different phase speeds - see figure 6 ( a ) .  The wave in figure 
7 (b) is concentrated at the fronts (y = f: 1) and has E > 0 while in figure 7 ( c )  the 
disturbance is largest at the equator and has E < 0. 

Figure 8 shows the dispersion curves when q5 = 0.28. At this value long waves are 
stable and instead the unstable resonance occurs between roughly k = 2.4 and 3.8. 

Figure 9 shows the horizontal structure of these Kelvin waves. (a)  and (b) display 
the stable long waves. Once again at these relatively small wavenumbers the velocity 
is approximately uniform across the current and the zonal velocity is approximately 
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FIGURE 7. Horizontal structure of the Kelvin modes in stable and unstable cases when q5 = 0.26. 
(a) An unstable mode with k = 1.00, c,  = -0.0729, kc, = 0.0466. As k increases this unstable mode 
splits into two stable modes (see figure 9a) .  (b) A stable Kelvin mode with k = 3.00 and 
c, = -0.0511. ( c )  The other stable mode with k = 3.00 and cr = -0.0794. The stable modes in (b) 
and ( c )  bifurcate from the unstable mode in (a) when k exceeds about 2.8. The first is concentrated 
at  the fronts, the second at the equator. 

geostrophic. (c) shows the unstable wave resulting from the coalescence of these two 
modes. 

An overview of changes in the geometry of the dispersion curves as $ is altered 
is given in figure 10, where c, is plotted as a function of k. One has the impression 
that intervals of instability are pushed out to higher wavenumbers as $ increases. 
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FIGURE 8. Dispersion curves when 4 = 0.28. At this value of q5 there are two stable Kelvin waves 
at small values of k which combine at about k = 2.2 to form an unstable mode with westward phase 
speed. 

5. Unstable resonances between shear modes 
Instabilities are often ' explained ' physically using energy arguments that distin- 

guish the wave energy from the mean energy. In the non-divergent limit the wave 
energy is positive definite because h = 0 (see (2.25e)) and so instability requires the 
transfer of energy from the mean to the wave. Based on this special case it is often 
concluded that the mean flow is a source of energy for instability or that instability 
is characterized by the preferential transfer of energy to the growing wave. But 
Marinone t Ripa (1984) have shown that this interpretation is inadequate once the 
idealization of non-divergent flow is removed. A striking example of this is the 
instability illustrated in $4 in which there is no transfer of energy between the growing 
wave and the mean flow. 

Is there a physical mechanism that is common to all cases and that characterizes 
instability ? Following Cairns (1979) we suggest that i t  is illuminating to examine the 
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FIQURE 9. Horizontal structure of the Kelvin waves when $ = 0.28. At this value of $ long waves 
are stable. (a) A stable Kelvin wave with k = 1.00  and c, = -0.102. (b) The other Kelvin mode with 
k = 1 . 0 0  and c, = 0.00447. (e) An unstable combination of the modes in (a) and (b) with k = 3.00, 
C, = -0.0292, kc, = 0.0511. 

energy and momentum of the stable modes which combine to produce instability 
when their dispersion curves cross (e.g. figure 4). What we find is that instability 
occurs when a wave with negative disturbance energy (E -= 0) ‘resonates ’ (i.e. has the 
same wavenumber and phase speed) with a wave that has positive disturbance energy 
(E > 0). The unstable mode, which is roughly a linear combination of the two modes 
that would be stable in isolation (figures 4, 7 and 9), has E = M = 0. The instability 
occurs because the disturbance with positive energy gains energy from the disturb- 
ance with negative energy. Both disturbances amplify. 

A useful rule for determining the sign of E for the stable modes of (3.10) is that 
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E is opposite in sign to c-ldcldk.? Thus from the dispersion curves in figures 2, 5, 
6 or 8 one can easily infer the sign of the disturbance energy and verify that 
instabilities always occur when waves with different-signed disturbance energies 
interact. 

Is this physical explanation of instability peculiar to the special basic state 
analysed in $4 ? In that example, and also in those discussed by Cairns (1979), there 
are no potential vorticity gradients so that the disturbance energy E is equal to the 
wave energy E,. However we now argue that this is not essential and that even 
familiar, non-divergent shear-flow instabilities are subject to an analogous explana- 
tion. The key is that one must examine the disturbance energy (rather than the wave 
energy) of a mode. 

An example will make this clear. Consider the ‘ triangular jet ’ 

I u=o if y > b, 

I 
u=o if y < - b , )  

whose instability was analysed by Rayleigh (1896). In the non-divergent limit 

u=-$y, v = $ z ’  

13 and the stream function $ is a solution of the Rayleigh equation 

For the basic state in (5.1), Qy is a set of delta functions at the kinks in the velocity 
profile. When k is very large, (5.2) has three stable modes, each localized at one of 
the shear discontinuities. 

For instance if (kbl % 1 then there are stable modes trapped near lyl = b. Taking 

UO c(k) = -, 
2kb 

where a is the amplitude. Using (2.31 b), and noting that 
limit (h = 0), one calculates the disturbance momentum of this mode 

= 0 in the non-divergent 

and the disturbance energy follows easily from (2.27). 
In  addition to the modes at  IyI = b there is a mode at  y = 0. Again when kb % 1 

t The complete result, which follows from (3.10), is that 2k3E(dc/dk) = -cSHu’Zdy. 
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(4 (b) (4 
FIGURE 11. Sketch of how the mean velocity profile is modified (dashed line) by the excitation of 
the stable and unstable shear modes of a triangular jet. (a) The localized (kb 9 l ) ,  stable mode at 
y = b. Exciting this mode increases both the energy and momentum of the fluid. (b) The localized 
(kb $- l) ,  stable mode at y = 0. Exciting this mode decreases both the energy and momentum of 
the fluid. The decrease in 2-momentum is obvious from the sketch. But the disturbance energy is 
also negative because the loss of mean energy overwhelms the positive wave energy. (e) An unstable 
mode with kb = O(1). This instabiiity appears when kb is reduced and the modes in (a) and (b) 
resonate. The instability ‘diffuses ’ the velocity profile. 

The disturbance momentum of this central mode is 

a2k2b M = - - .  
2UO 

The disturbance energy follows from (2.27) and is negative when kb % 1. Thus to 
excite this stable mode, energy and momentum must be removed from the fluid. Even 
though the wave energy is positive, to excite the mode a larger amount of energy 
must be removed from the mean flow. These results are summarized in figure 11. 

As kb is reduced these shear modes become less localized. Also their phase speeds 
become less disparate. In fact, according to (5.3) and (5.5) when 

bk = t (5.7) 

all three modes have the same phase speed viz. iU0. Of course this is only a rough 
estimate based on the limit kb % 1. But our previous remarks suggest that at 
about this wavenumber instability will occur because modes with opposite-signed 
disturbance energy and momentum have the same wavenumber and phase speed. In 
fact Rayleigh shows that instability occurs at the critical wavenumber kb = 1.75 and 
maximum growth rate is a t  kb = 1.25. The rough estimate in (5.7) lies between these 
two. Encouraged by this, one can show that the instabilities of all the piecewise-linear 
velocity profiles discussed by Rayleigh occur when modes of opposite-signed disturb- 
ance energy and momentum coalesce. Further, one can roughly predict the critical 
wavenumber by equating the phase speeds of the stable constituents in the limit 
k b +  1. 

One unresolved difficulty with the preceding ‘ broken-line ’ model is how the scenario 
it suggests generalizes to smoothly varying velocity profiles with critical-layer 
singularities. If this smooth profile has an inflexion point, one establishes the 
existence of unstable modes by first finding a regular neutral mode (i.e. one with a 
critical layer at the inflexion point) at a certain wavenumber k,. This is a stability 
boundary and on one side of it, say k < k,, the Tollmien-Lin perturbation procedure 
constructs unstable modes. The previous argument suggests that on the other side 
of this boundary, k > k,, we should find two neutral modes which resonantly coalesce 
at k,. Instead there is a continuum of singular neutral modes. The unresolved question 
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which concludes this section is whether the regular neutral mode at k, is a resonance 
between two members of the continuum 1 

6. Conclusion 
Energy and momentum transfer between a growing unstable wave and the mean 

flow is not essential for instability. This counterintuitive result is implicit in previous 
stability studies of the shallow-water equations but it has been either unnoticed 
(GKS) or disguised by defining the ‘wave energy’ as (2.33) and introducing UhudA 
as an ‘interaction energy’ which is distinct from the ‘wave energy’ and the mean 
energy (Satomura 1981 a, b). We would argue that not much physical insight is gained 
by this and in fact basic results such as (2.29) and (2.30) are obscured. The most 
straightforward conclusion is that there is nothing special about the direction of 
transfer of energy in instabilities. 

Two questions are suggested by these results. How does one categorize non- 
dissipative instabilities using the direction of energy transfer ? And are there common 
features that characterize all non-dissipative instabilities of the shallow-water 
equations ? 

In answer to the first question, we propose the tripartite scheme in $2.4. In the 
non-divergent limit, where the Rayleigh equation is recovered, all instabilities have 
positive wave energy and are in the first category. The second category is exemplified 
by the analysis in $4 and in fact we showed that if the basic state has uniform 
potential vorticity then its instabilities are in this category. Thus the instabilities 
discussed by GKS and Satomura have zero wave energy and are in the second 
categ0ry.t As for the third category, the only bonajide examples we know of are those 
exhibited by Marinone & Ripa (1984). But we expect that many of the ageostrophic, 
frontal instabilities discussed in the literature are, in fact, in this third category. 

The second question posed above is whether these diverse instabilities have any 
features in common. One obvious answer to this question is that in every case energy 
and momentum are conserved so that the disturbance energy and disturbance 
momentum of an unstable mode must be zero. In $54 and 5 we suggested that this 
constraint can be satisfied when two otherwise stable modes, with opposite-signed 
disturbance energy and momentum, resonate. The combination grows because the 
partner with negative energy transfers energy to the one with positive energy. 
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t In the context of stratified shear flow, the piecewise-constant profiles of velocity and density 
studied by Cairns (1979) are also in this second category. In these Kelvin-Helmholtz instabilities 
there is no disturbance energy in the mean flow, i.e. E = E, and 8, = 0. 
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Appendix A. The numerical solution of the eigenvalue problem 

best to use (2.18) to eliminate 
h and u :  

Rather than deal with (2.19), in which the eigenvalue appears quadratically, i t  is 
from (2.17). The result is two coupled equations for 

(A 1) I Uu+h = C U ,  

{ - k-2(d/dy)  H(d/dy)  + H> u + Uh = ch, 

in which the eigenvalue c is conveniently placed. If we now discretize the y-interval, 
( A  1 )  is equivalent to an eigenvalue problem 

AX = C X ,  (A 2) 

where x is the eigenvector and A is the finite-difference form of the various differential 
operators and y-dependent coefficients on the left-hand side of (A 1). The eigenvalues 
are computed by first transforming A into Hessenberg form and then using the double 
QR method. The eigenvectors were then computed using inverse iteration. 

This method was checked against a shooting method which used a fourth-order 
Runge-Kutta scheme and the agreement was satisfactory. We also checked the 
integral relationship : 

j:l HI$ [ + k 2 { H -  ( U - C ) ~ } I ~ ~ ~  dy = 0. ( A  3) 

In fact with 100 subintervals (i.e. 6y = 0.02) the matrix method gives eigenfunctions 
for which this integral is about 10-l2. Shooting with a step size of 6y = (i.e. 
20000 intervals) produces eigenfunctions for which the integral is only From 
a number of comparisons our conclusion is that for this particular eigenvalue problem 
the matrix method is more accurate and systematic than shooting. 
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